CAMBRIDGE INTERNATIONAL EXAMINATIONS **Cambridge Ordinary Level** ### MARK SCHEME for the October/November 2014 series # **5054 PHYSICS** 5054/21 Paper 2 (Theory), maximum raw mark 75 This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers. Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers. Cambridge will not enter into discussions about these mark schemes. Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components. ${\small \circledR}$ IGCSE is the registered trademark of Cambridge International Examinations. | Page 2 | Mark Scheme | Syllabus | Paper | |--------|---|----------|-------| | | Cambridge O Level – October/November 2014 | 5054 | 21 | # Section A | 1 | (a) | (i) | (a =) (v - u)/t or Δv /t or (55–40)/2 or equivalent values from graph 7.5 m/s ² | C1
A1 | | |---|-----|--------------|---|----------------|-----| | | | (ii) | (F =) ma or 180 × 7.5
1300/1350/1400 N | C1
A1 | | | | (b) | (i) | (acceleration) decreases (to zero) | B1 | | | | | (ii) | air resistance/friction/drag mentioned <u>air</u> resistance/friction/drag increases (with speed) or resultant force | B1 | | | | | | decreases (with speed) (finally) (air) resistance = driving force or resultant is zero | B1
B1 | [8] | | 2 | (a) | (i) | $F_1 \times d_1 = F_2 \times d_2$ or $(0.39 \times 0.40)/0.30$
0.52 N | C1
A1 | | | | | (ii) | 0.052 kg or 52 g | B1 | | | | (b) | | =) m/V or 52/60 or 0.052/0.000 060 or 0.052/60 $0/867/866.7 \text{kg/m}^3$ or 0.87g/cm^3 or $8.7 \times 10^{-4} \text{kg/cm}^3$ etc. | B1
B1 | [5] | | 3 | (a) | (ato | oms/molecules/particles) move (about)/collide/hit oms/molecules/particles) collide/hit the walls/surface (of the cylinder) ce on walls (causes pressure) | B1
M1
A1 | | | | (b) | volu | ms/molecules/particles closer/more compact/more molecules per unit ume/less space to move re collisions with the wall/surface (of chamber) not if speed/KE changes | B1
B1 | [5] | | 4 | (a) | trar
with | r two from: Insmission of energy Inout net movement of medium Inough vibration of particles | B2 | | | | (b) | (i) | number of (complete) waves/cycles/oscillations per unit time/second | B1 | | | | | (ii) | distance between (neighbouring) waves distance between (neighbouring) wavefronts/points of same phase or crest | C1 | | | | | | to crest/tough to trough distance | A1 | | | | (c) | wav | ee reflected wavefronts roughly correct direction velengths equal to each other and incident wavelength by eye ected wavefronts joined to incident wavefronts | M1
A1
B1 | [8] | | Page 3 | | Mark Scheme | Syllabus | Pape | er | |--------|-----|--|----------|----------------------|-----| | | | Cambridge O Level – October/November 2014 | 5054 | 21 | | | 5 | (a) | longitudinal/pressure/sound (wave) or compressions and rarefactions (frequency) greater than 15 – 25 kHz/above limits of audibility | | B1
B1 | | | | (b) | $(x =) vt/2 \text{ or } 340 \times 0.030/2 \text{ or } 340 \times 0.015 \text{ or } 10.2$ 5.1 m | | C1
A1 | [4] | | 6 | (a) | electrons repelled by cloud (leaving ground positive) not positive charge/protons move like charges repel or electrons negative | | B1
B1 | | | | (b) | (region) where (electric) charge experiences a force | | B1 | | | | (c) | (I=) Q/t or 180/0.0015
$1.2 \times 10^5 \text{ A}$ | | C1
A1 | [5] | | 7 | (a) | wire cuts field lines current/e.m.f./voltage induced | | B1
B1 | | | | (b) | larger deflection and to the left/opposite direction | | B1 | | | | (c) | no deflection/current | | B1 | [4] | | 8 | (a) | neutrons and protons together and alone in the middle 5 protons 7 neutrons (if protons and neutrons unlabelled 1/2) 5 electrons and electrons surrounding nucleus | | B1
B1
B1
B1 | | | | (b) | (i) 6 | | B1 | | | | | (ii) 12 | | B1 | [6] | | | | | | [Total: | 45] | | Page 4 | Mark Scheme | Syllabus | Paper | |--------|---|----------|-------| | | Cambridge O Level – October/November 2014 | 5054 | 21 | # **Section B** | 9 | (a) | • | nass | ofrom:
s/wood; geothermal power; solar power; tidal power; wave power; wind | B2 | [2] | |----|-----|-------|----------------------------|--|----------------|-----| | | (b) | (i) | 1.
2. | $2.1(4) \times 10^{17} \text{J}$ (allow $2.1(5) \times 10^{17} \text{J}$ if candidate uses $365.24/5$) any one from: not enough water (to maintain maximum flow); rainfall varies (during the year); periods of low demand | B1
B1 | | | | | (ii) | 1.
2. | $2.7(2) \times 10^{13} \text{ J}$ | C1
A1 | | | | | | 3. | $2.4(48) \times 10^{13}/2.7(2) \times 10^{13}$
0.90 or 90%
any two from: | C1
A1 | | | | | | | friction (of water) with pipe/turbine/; viscosity of water; friction at bearings; resistance/heat in the wires; KE of water leaving turbine | B2 | [8] | | | (c) | (i) | (for
less | s energy lost/wasted or more efficient
a given power) a high voltage results in a small(er) current
s heat generated in wires or I ² R or less resistive losses | B1
B1 | | | | | | (no | t if <u>changed</u> resistance mentioned) | B1 | | | | | (ii) | tran | nsformer | B1 | | | | (| (iii) | tran | nsformers only work with an a.c. supply | B1 | [5] | | | | | | I | Total: | 15] | | 10 | (a) | (i) | (hea | ated/hot water expands or density of heated/hot water decreases ated/hot water) rises vection (current)/circulation set up or (heated/hot water) rises and cold | B1
B1 | | | | | | | er sinks | B1 | | | | | (ii) | con
at to | vection transfers heat upwards or less dense/heated/hot water (already) op | B1 | [4] | | | (b) | (i) | | =) VIt or $230 \times 9.6 \times 3.5$ or $230 \times 9.6 \times 3.5 \times 60$ or 7728 (368) \times 10^5 J | C1
A1 | | | | | (ii) | (Δ <i>T</i>
69 (
91° | | C1
C1
A1 | | | | | (iii) | | poration or thermal energy/heat in plastic
sing/element/surroundings (i.e. air or environment) | B1 | [6] | | Pa | ige : | 5 | | Syllabus | Pap | er | |----|-------|-------------------------|--|-----------------|----------|-------| | | | | Cambridge O Level – October/November 2014 | 5054 | 21 | | | | (c) | (i) | poor conductor (heat or electricity) or less heat lost/cooler to touch risk of shock | or less | B1 | | | | | (ii) | poor emitter and less heat lost/of radiation/IR (not poor absorber) | | B1 | [2] | | | (d) | (i) | temperature where liquid and vapour/gas coexist or where liquid (r substance) boils (at atmospheric pressure)(allow becomes vapour/gas) | not | B1 | | | | | (ii) | (work done) against/overcoming forces between molecules or mole gain P.E. (ignore K.E. increases) changes to P.E./molecules separate | ecules | B1
B1 | [3] | | | | | | | [Total | : 15] | | 11 | (a) | (i) | energy to drive charge around a circuit or terminal p.d. on open circuit or energy to drive unit charge around a circuit or energy/charge | euit | B1
B1 | | | | | (ii) | lasts longer or lower internal resistance or can replace a cell withous witching off or continues to work if one cell is flat ignore more curre (not greater e.m.f./voltage) | | B1 | [3] | | | (b) | (i) | 4.0Ω | | B1 | | | | | (ii) | $(1/R_{tot} =)1/R_1 + 1/R_2$ or $1/3 + 1/X$ or product/sum or $(3 \times X)/(3 + 1)$ | + <i>X</i>) or | C1 | | | | | | $\frac{1}{X} = \frac{1}{2} - \frac{1}{3}$ 6.0 \Omega | | A1 | [3] | | | | | | | | | | | (c) | (i) | (I =) V/R or 2.0/4.0
0.50 A | | C1
A1 | | | | | (ii) | (from) 0 and (to) 0.50 to 5.0 A | | B1 | [3] | | | (d) | <i>I</i> ₂ = | $I_3 + I_X$ | | B1 | [1] | | | (e) | (i) | 1.0 V | | B1 | | | | | (ii) | 1.0 V | | B1 | [2] | | | (f) | (i) | temperature decreases resistance decreases | | B1
B1 | | | | | (ii) | greater than 0.75 A (e.c.f. resistance increases in (f)(i)) | | B1 | [3] | | | | | | | [Total | : 15] |